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ABSTRACT 

Every aperiodic measure-preserving transformation can be obtained by a 
cutting and stacking construction. It follows that all such transformations are 
infinite interval exchanges. This in turn is used to represent any ergodic 
measure-preserving flow as a C~-flow on an open 2-manifold. Several additional 
applications of the basic theorems are also given. 

The cutting and stacking construction as a basic tool in ergodic theory is well 

known (cf., for example, [2] Ch. 6). It is less widely known that every aperiodic 

measure-preserving transformation (a.m.p.t.) can be obtained in this way. By 

using this basic fact one can realize an arbitrary ergodic transformation as an 

infinite interval exchange with the same cluster point in the domain and in the 

range. As a first application of this fact we show in §2 how any a.m.p.t, can be 

realized as the Poincar6 return map for a nice cross-section of a C=-flow on an 

open 2-manifold. Combining this with a smoothing technique found in [4] we are 

also able to show that any ergodic flow can be represented as a smooth flow on 

such a manifold. This of course does not advance us in the study of the basic 

question of finding smooth compact models but does highlight the fact that in the 

absence of compactness the problem is quite easy. 

Another application of the basic fact is the representation of an arbitrary 

ergodic transformation as the speed up .(~)TP~x) of any preassigned ergodic T. We 

should point out that just as requiring p(x) to be integrable places severe 
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restrictions on the nature of T p (see below in §3), so too requiring that the 

partition of the interval in an infinite interval exchange S have finite entropy 

forces restrictions on S, such as forcing S to have zero entropy. 

§1. Cutting and stacking and infinite interval exchange 

We begin by reviewing briefly the cutting and stacking construction in order to 

establish notation. A stack 5P(h, w) of height h and width w is a collection of h 

intervals of length w thought of as being placed one above the other, with a 

transformation implicitly defined on the first h - 1 levels as translating each level 

to the level above. The union of the levels of a stack 5e is denoted by 15el- If wi 

are widths that add up to w, E~=l w~ = w, then to cut a stack (h, w) into b stacks 

~ ( h ,  wi) is to divide each level of ,of into b intervals of length wl, w2, . . . ,  wb 

(reading from left to right) and then forming a single stack 5e~ from the ith 

interval of each level, so that I S el = [..J~=l 15e~ I. 

An abstract construction by cutting and stacking begins with a finite collection 

of stacks, cuts each one into smaller stacks, possibly adds some number of new 

levels to these (not necessarily the same on each) and then forms new stacks of 

greater height by placing stacks of the same width one on top of the other. This is 

repeated infinitely often and if the total length of intervals is finite and if the 

widths tend to zero, then this always defines an ergodic transformation of a finite 

interval preserving Lebesgue measure. To describe this is a precise way we 

denote by ~(h~,  w).  oqP2(h2, w) the stack of height hi q- h2 and width w formed by 

placing the levels of 5e2 directly above the highest level of 5el. Note that SenSe2 is 

only defined if the width of 5e, equals the width of 5P2. The basic step in the 

construction proceeds formally in a sequence of three steps beginning from 

~(h, ,  wi), 1 <- i -<_ a : 

(i) for wii's satisfying Y,~ w,i = w, cut ~ into 5eq(h~, wq); 

(ii) for non-negative integers /~i, gq take new levels in the form of stacks 

~(~j ,  w~j ), 5P~*(g;, wq) and form 5e,~iO°,f*; 

(iii) partition the indices (i,j), 1 _<- i _<- a, 1 _-<j --< b~ into ordered sets Ik, 

1 _-< k _-< d that have the property that the wq for (i, j) EIk have a common value 

ffk (these need not be maximal with this property, and the ordering is arbitrary) 

and form 5~k by concatenating in order the 5eq's with (i,j) EIk. Clearly the height 

of /~ of 5)k is given by E . , ,~ ( fq  + h~ + g~i). 

The parameters that determine the transition from the owl's to the 57k's are the 

cutting widths wq, the numbers of new levels added at the bottom and at the top 

~j, g~j, and the way in which stacks are put together which is governed by the sets 
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Ik. A cutting and stacking construction consists of an infinite sequence of such 

basic steps and is completely determined by the initial stacks and the parameters 

described above for each step. 

Turning now to an a.m.p.t. (X, ~,/z,  T) we denote by J-(B, n, e) a Rohlin 

tower of height n and base B with residual set e, so that the sets 

B, TB . . . . .  T°-'B are disjoint and /x([ 3- [) = l - e, where I J ( B , n , s ) l  = 

0~=~ T'B. We will need the existence of a sequence of R-towers with [~-~ [C 

I~-12 C . . .  and even more, that for each l, I ~-~+1 [\ (B, U T",-'B,) D l~-~ I, i.e., ~]+, 
contains ~-~ in its "interior." To achieve this take some Sequence e~ N0 and 

nl < n2 < • • • tending to infinity rapidly enough so that 

i•/ ni  I <act for 1 ~ 1 < ~ .  
'= n i + l  

O3-1 1 Start with o°7-It~',w_, 1, n,, ½e,), and ~/2(B2, ne, ~s2). If B~_ 0 T"~-'B~- . intersects 1Sll  at 

all, change 8-1~ to 8-~ by omitting whole columns (i.e., sets of form [..J,]'-' TJA 
where A C BI) so that I 8-~(B~, n~, e~)l is now disjoint from B~ U T"2 'B~. Clearly 

we have omitted a set of measure at most 2n,/n2. Choose now some 
07 q 1 I G7 -'~ ~3(B3, n3,~_e3), and modify in a similar way g~ to g/i, by omitting whole 

columns. This further reduces 8-~ to 8-~ by an amount at most 2n2/n3, and 

reduces 8-~ by at most the same. We continue this infinitely many times; clearly 

for fixed l the towers 3 ?  converge to a limit as m ~ % and we obtain towers 

8-~(B~, n~, g~) in the limit with g~ _-< e~, and the required inclusion relations. The 

main result of this section is 

THEOREM 1. Any a.m.p.t. (X, ~, tz, T) can be obtained from a cutting and 
stacking construction. 

PROOF. Let ~ 1  C ~ 2  C ' ' "  be a sequence of finite partitions of X so that 

V7 ~ = ~ ,  and let ~ be a sequence of R-towers with each [ ~  I contained in the 

"interior" of [ g~+~ I, n t / %  & NO. We will now describe a cutting and stacking 

construction. For the first collection of stacks take 8-~ and divide it into pure 

columns with respect to ~ ,  that is to say, partition B~ into maximal sets B, ,  

i _-< j ~_ a~ so that for 0_-< n < n~ the sets T"B, lie entirely in a single set of ~, ,  

and then take stacks 5e~(n~,/z (B,)) ,  1 _-< i _-< al. These stacks correspond exactly 

to R-towers with height n~ and have base B~,, and we can also think of each level 

in 5°I labeled by the index of ~ that indicates that atom of ~ to which the 

corresponding level in 5f~,(B,, n~, s , )  belongs. 

Take now 8-2 and divide it into maximal ~2-pure columns, that arise by 

partitioning Bz, the base of J-z, into sets B2k. We want the stacks in the second 
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step of our cutting and stacking construction to correspond to the towers 

3-2~ (B2k, nk, e2~ ). This dictates both the cutting widths, the number of new labels 

(there is some freedom in assigning new levels between successive 3-z-columns in 

the J2k to the end of the lower or beginning of the upper J-l-column), and the 

index sets. It is exactly the property that I g ,  I be contained in the interior of ~-2 

that makes this possible. Once again we label the levels of the abstract stacks 

using the ~2-1abels in 32. This procedure is continued infinitely often and 

concludes in a cutting and stacking construction defining a transformation S that 

also has partitions ~ C ~ C. • • so that the processes (S, ~ )  are isomorphic to 

(T, ~,) and so that V ~  V ~  SJ~i generates the full o--algebra of S. This shows 

that S is isomorphic to T and completes the proof. [] 

To realize an abstract cutting and stacking construction as an interval 

exchange one simply places the levels side by side from left to right and adds the 

new levels in a single step, in some order on the right. We illustrate in Fig. 1 a 

representation of a cutting and stacking construction that begins with a single 

stack 5e,(2, ~), {wij : ~ , ' , ' } ,  f,j = gjj = 1, 1 =< j =< 3, L = {11, 12}, 12 = {13}. 

Initially we have two intervals, [0, ~], [~,-~], with the first interval in the domain 

of our function - -  but not in the range, and vice versa for the second. Adding the 

further intervals to the right puts both intervals in the domain and in the range - -  

[~,~] be divided into the intervals. It follows where to do the first requires that J 

from the proof of Theorem 1 that any transformation has a cutting and stacking 

model where the f ' s  and g's are always at least one, so that intervals need be 

subdivided at most once, and we have thus established 

! " L 
. 4 

§ 

,'3 
Fig. 1. 
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THEOREM 2. Any a.m.p.t, is isomorphic to an interval exchange transforma- 

tion T:[0 ,  1]--> [0, 1] of the following type', 

(1) sub-intervals Ih 12, I3 . . . .  are given by 

= (t~-l, tj) 

with 0 = to < t, < t2 < - • •, lim tj = 1; 

(2) there exist real constants {at}, so that for t EIj, T(t)  = t + aj ; 

(3) the only accumulation point of {tj_~ + aj} U {tj + aj} is 1; 

(4) T is one-to-one. 

§2. Geometric models for ergodic measure-preserving transformations and 
flows 

We now show how to extend the standard suspension of interval exchange 

maps (cf. [1]) to ergodic measure-preserving transformations, so as to obtain 

THEOREM 3. Given any a.m.p.t. (X, ~3, tz, T), there exists a C~-flow 43 on an 

open 2-manifold M, preserving a finite measure, and a transverse curve y on M, 

such that T is isomorphic to the Poincar~ return map of 43 in % 

PROOF. From Theorem 2 it is sufficient to make this construction for an 

infinite interval exchange transformation, say f, defined on a set of intervals 
{Ii}~N, of lengths re(I,). 

We begin as for the standard suspension: take the square ]0, 1[ × [0, 1], with 

constant vector field pointing upwards 0/cgy, and glue to it strips ]0, m(/j)[ × 
[0,1], with the same constant field, identifying: 

]0, m(/j)[ × {0} with/j  ×{1}, 

]0, m(/,)[ x {1} with f(/ ,)  x {0}. 

The only problem is the existence of extremities for the interval ~ x {1} and 

f (~)  x {0} which are boundary points for the surface and where the flow is not 

defined (Fig. 2). By slowing down the flow in a Ca-way in a neighbourhood of 

Fig. 2. 
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those points we can create singularities, and remove them; it is clear that we 

obtain in this way a C~-flow on an open manifold, satisfying the proposition, 

except maybe for the finiteness of invariant measure. We shall give a local model 

that will ensure this also. 

We take the rectangle [0, 1[ × [ -  1, 1], and define on it two vector fields: 

0 
X1 = ~ (original vector field), 

,9 ,9 Xffx, y) = x ~ -  x - y-~y (model for perturbation). 

Choosing 0 < B < 1, we take any C~-function ~ on the rectangle such that: 

~¢ = 1 outside [0, B] × [ -  B, B], 

' [ I > ~  outside 0, x 4 ' ' 

1 l ¢ < ~  on 0, x 4 ' 4  ' 

~ = 0  on 0, x ~ , , 

and define: X = q~Xj + (1 - q~)X2. 

Take as model those trajectories of X which lie under the separatrice leaving 

the singular point (0, 0). We can restrict our attention to the flow box [0, B] x 

[ - B ,  B] (see Fig. 3), since nothing is changed outside; any trajectory of the 

model enters the box at a point (x, - B) of the lower side, and leaves it by the 

upper side after a time tx. Since one gets an invariant measure for the flow by 

O 

0 B . . . . . . . .  a 

B 
Fig. 3. 
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integrating the time along the trajectories with respect to the Lebesgue measure 

for a transverse curve, it is enough to bound f~ txdx. 
An elementary study shows that 

hence 

3B 
tx < 8 B  if x > - -  

4 '  

(~x  ) 3B t x < 8 B + 2 1 o g  3B if x < - ~ - ;  

f Btxdx <-~B- + 8B 2 

so that the invariant measure is only increased 3B/2 + 6B 2 by the perturbation. 

Hence, applying this perturbation near each boundary point in a neighbourhood 

of decreasing diameter, one gets finite invariant measure. 

If we want to find a smooth model for a flow T, we begin by representing the 

flow as a special flow built under a function as indicated by the 

Ambrose-Kakutani  theorem. Then we apply Theorem 3 to the base transforma- 

tion of the special flow. This gives us a smooth model of a flow which is obtained 

from T, by a measurable time change. At this point we recall the technique of [4] 

which will enable us to smooth out this measurable time change without 

changing the isomorphism class. We assume that T, is ergodic and assert the 

following proposition whose proof is a minor modification of the proof of 
Theorem 1 in [4]. 

PROPOSITION 4. If qb, is a smooth ergodic measure-preserving flow on a 
non-compact manifold M, then for any measurable time change ~, there is a 
smooth time change ~, (so that qb, is also a C~-flow ) so that ~b, is isomorphic to qb,. 

Note that the non-compactness of M is essential - -  we have to be able to drive 

small measurable changes out to infinity so that they eventually disappear. The 

ergodicity is also used in an essential way - -  since if there would be compact 

invariant sets then once again the corrections would condense in a finite portion 

of the manifold. We also note that the smooth time change for ~, can be chosen 

to be bounded over the whole manifold. If we were to allow unbounded velocity 

changes, then the argument of [4] could be simplified. 

Now combining Proposition 4 with Theorem 3 we obtain 

THEOREM 5. Given (X, lz, T,), an ergodic measure-preserving flow, there is a 
C®-flow c~, on an open 2-manifold M that preserves a smooth measure and is 
isomorphic to T,. 



Vol. 50, 1985 CUTTING AND STACKING 167 

§3. Generalized powers 

In [5] we make reference to the fact that if (X, T) and (Y, S) are arbitrary 

a.m.p.t, then there is a positive integer-valued function p on X so that 

'S(x) = TP~(x)  is invertible and isomorphic to S. Note that in contrast to the 

situation in Dye's theorem, the orbits of S are strictly sub-orbits of the orbits of 

T. The novelty is that p is positive integer-valued. In case p is integrable 

J. Neveu [3] has shown that the entropy of T p equals ( f p ) .  h(T).  Nonetheless it 

will follow that we can have situations where both j 'p  and h(T)  are infinite and 

yet h ( T  p)=O. 
The key remark is that if (X, N,/.L, T) is e.m.p.t, and A and B are any two such 

sets of positive equal measure, then there is a positive integer-valued function p 

defined on A so that T " ( A )  = B up to a set of measure zero. Thus one can 

simply copy a cutting and stacking construction representation for S inside 

(X, T) using partial transformations of the type that we have just described. If 

one carries out the procedure that we have just described, then one gets only 

that T has a factor that is isomorphic to S, since we have not provided for the 

fact that in the cutting and stacking construction the levels generate the whole 

o--algebra. In order to guarantee that we must exercise more care. The key is the 

fact that many steps in a cutting and stacking construction may be combined to a 

single step. This can easily be seen by reading off from the stacks at the end of a 

finite sequence of steps the necessary parameters just as we did in §1 when we 

read these parameters from the pure columns of a R-tower.  Consequently, we 

can always assume that the cutting widths, w,,, are as small as we please in any 

given stage. 

THEOREM 4. For any pair of a.m.p.t.' s (X, N, tx, T) and ( Y, ~, v, S) there is a 
N-measurable function p : X---~ N such that S(x ) = TP(XJ(x ) is invertible /z-a.e. 
and (X, N,/z, S) is isomorphic to (Y, c~, v, S). 

PROOF. Fix some cutting and stacking construction that represents S and a 

sequence of finite partitions ~ of X such that V ~' ~ = N. To be definite, let us 

suppose that ~i has 2 i elements each of measure 2 -~. If necessary, amalgamate 

the first few steps in the cutting and stacking construction for S so that all levels 

in the initial stacks have measure less than 10 -~, while their total mass is at least 

1 - 10-'. It is now clear that one can choose sets in X to represent these levels in 

such a way that they will approximate ~,  with an error at most 2 × 10 -~. By our 

basic remark, one can now define pl on the sets in X that represent the non-final 

levels in the initial stacks, so that the partial transformation 
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Sl (x)  = TP'~X~(x) 

models the cutting and stacking transformation on the initial stacks. 

Next one examines how ~ ,  divides these sets in X and purifies these towers 

using $1. More precisely, if AI ,  A2 . . . . .  A ,  C X  represented one of the initial 

stacks, so that S1A, = Ai+~, 1 <-_ i < h, we partition A~ into maximal sets A~ of 

positive measure with the property that for each 0 <- n < h, ST(A])  lies entirely in 

one set of ~2, and then consider S~(A]),  0<_- n < h. Let e2 denote the maximum 

value assumed by I~(ST(Ai))  over the various stacks, and let m2 equal the 

number of these sets. Knowing e2 and m2 we now amalgamate the next few steps 

in the cutting and stacking construction so that the cutting widths are small 

enough and the total measure large enough so that we can model them by sets in 

X which will approximate ~ by an error at most 10 -2. Having done so, we define 

p2 as an extension of pl, so that S2(x) = TP2~X)(x) extends S~ and $2 has R-towers 

that copy the above steps in the cutting and stacking construction. 

This process is carried out infinitely many times and gives a model in (X, T) for 

the cutting and stacking construction of S with levels that approximate ~i better 

and better and hence generate ~.  Thus the resulting S, the union of S~ C $2 C. • -, 

is isomorphic to S. [] 
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